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A recent paper of Capone et al. has studied an extended Hubbard model, in
which local orbital degrees of freedom allow an even integer occupation at each
site. A strong local repulsion U triggers a metal-insulator transition. Within a
DMFT numerical analysis they show that when the ground state is a singlet a
pocket of s-wave superconductivity appears in the vicinity of the Mott transi-
tion, with a strongly enhanced superconducting gap. A qualitative understand-
ing of their result is proposed, and suggestions are made of possible systems in
which this beautiful effect might be searched.
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1. INTRODUCTION

It has been known for many years that a lattice gas with an integer filling
N=pNL (where p is an integer and NL the number of lattice sites) will turn
into an insulator if the local electron repulsion U is strong enough. Then
the primary feature of the level structure is the valency p: charge excitations
towards states with a valency p±1 face an energy gap, hence the insulating
behaviour. Degeneracies within a given valence state do not affect such a
metal-insulator transition: for large U they remain minor perturbations as
well as the kinetic energy due to electron hopping. Of course all of that
breaks down in doped systems, when p is not an integer: the system is
always a conductor—albeit a strange one close to the Mott transition.
The standard example is the usual Hubbard model with no orbital

degree of freedom: spin-1/2 electrons hop with a band width D. The only



nontrivial integer valency is p=1: in the insulating state each site is a spin
doublet. These localized spins are coupled via Anderson superexchange:
they usually order at low temperatures. Antiferromagnetism hides the pure
Mott transition which is never reached. If frustration is large enough one
might envisage instead an incoherent paramagnetic insulator retaining a
residual spin entropy So=NL ln 2 at zero temperature. Then the Mott
transition may be viewed as a Kondo alloy problem: free electrons appear
below a critical Uc and they quench that entropy, turning the paramagnetic
insulator into a regular paramagnetic Fermi liquid. As a result the transi-
tion is first order, conductor and insulator coexisting in a finite range
Uc1 < Uc2. That problem has been extensively discussed in the limit of infi-
nite dimension, using ‘‘dynamical mean field theory’’ (DMFT). (1)

The problem is much richer if electrons have orbital degeneracy g.
Then there are 2g one electron states per site and a nontrivial Mott insula-
tor may exist for any valency p between 1 and (2g−1). The degeneracy
between the Cp2g atomic states with valency p is lifted by local interactions,
crystal field and spin-orbit coupling. According to Hund’s rule the ground
state should be the one with maximum multiplicity: let us explore the
inverse situation in which the ground state has minimum degeneracy. For
an even valency that will be a singlet, both orbital and spin. One may argue
that fighting against Hund’s rule is unreasonable (it is based on exchange!).
We take it as a model: there are other ways to achieve a singlet ground
state, as we shall see later. In such a case the Mott insulator has no residual
entropy at T=0, and the Mott transition is not masked by translational
symmetry breaking such as antiferromagnetism. The interaction J that
brings the singlet down acts as an attraction of two electrons in the s wave
channel: could such a trend induce superconductivity? One may formulate
the question in a simple specific example, namely L=1 electrons and a
valency p=2: can the Mott transition create superconductivity?
That question has been studied recently in a beautiful paper by

Capone et al., (2) using an extension of DMFT that embodies both orbital
degeneracy and local superconducting pairing. They find that close to the
Mott transition a superconducting pocket appears, with a greatly enhanced
energy gap D as compared to what it would be with J only, without the
Coulomb repulsion U. As a result the Mott transition is once again hidden,
but here by superconductivity instead of antiferromagnetism. The purpose
of this note is to provide a physical understanding of that important result,
which seems to be a generic feature of any Mott transition to an insulator
with no residual entropy at T=0. Such qualitative arguments were actually
presented in the original paper: (2) we modify them somewhat and we hope
to clarify the issue.
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DMFT considers the limit of an infinite dimension in which all
interaction vertices are local. In momentum space they should not depend
on momenta. If this were true one could infer the full scattering vertex
from its forward scattering limit, which in turn is related to Landau quasi-
particle interactions, i.e., to thermodynamic response functions. In prin-
ciple the Cooper superconducting kernel K should follow. Unfortunately
the infinite dimension limit is subtle, as shown in the Appendix: such
arguments only yield orders of magnitude. They are nevertheless instruc-
tive, as they suggest the sign and order of magnitude of K. In Section 2 we
discuss the usual Hubbard model as a test: we conclude that close to the
Mott transition effective quasiparticle interactions are repulsive and of
intermediate strength, as expected in a system with only repulsions. Super-
conductivity can only exist for doped systems and then it is of type d (3).
The orbitally degenerate case is discussed in Section 3: it confirms the
numerical results of ref. 2. In the conclusion we emphasize the weaknesses
of our approach—whose main virtue is simplicity!

2. NONDEGENERATE REGULAR HUBBARD MODEL

The only interaction is a local repulsion U. For a half filled band a
Mott transition occurs at a critical Uc. Using Dynamical Mean Field
Theory (DMFT) it was shown (1) that the transition between a paramagne-
tic conductor and an incoherent paramagnetic insulator (with random local
moments and a residual entropy) is first order. The metal and insulator
coexist between Uc1 (at which the Mott gap Dg opens), and Uc2 (at which
free carriers disappear). Just below Uc2 free carriers sit in a narrow reso-
nance peak, with width D=zD much smaller than the bandwidth D. z is
the usual renormalization constant that goes to 0 at Uc2. Near the transi-
tion, free carriers are heavy fermions and one can view the paramagnetic
metal as a Kondo alloy with a Kondo temperature TK % D. These free
carriers quench the residual entropy of the insulator on a small temperature
range % TK, hence the large effective mass. They appear if the energy TK
(per site) gained in forming Kondo singlets overcomes the kinetic energy
cost zDg in bringing z states from the Mott sidebands to the middle of a
large preformed gap. (4) The existence of a residual entropy is thus a crucial
feature of heavy fermion behaviour. In contrast the spin entropy of the
insulator could be quenched by antiferromagnetic order. In such a case the
metal-insulator transition remains, but it is due partly to correlations
(Mott), partly to Bragg reflection (Slater). The controversy is mostly
semantics as both effects coexist. What is not semantics is the lack of a
narrow resonance at the symmetry breaking transition.
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Since the problem only has a repulsion it is unlikely that supercon-
ductivity occurs. It is nevertheless useful to produce a simple argument that
explains why. Naive perturbation theory would say that the kernel UGG in
the Cooper channel is reduced by a factor z2, the weight of the quasipar-
ticle peaks in the two G factors. Since the quasiparticle density of states is
r̃=r/z the resulting dimensionless quasiparticle interaction r̃Uz2 should
be a weak repulsion of order z. Put another way the interaction energy is
Uz2 % Dz. But does perturbation theory make sense? An alternate approach
is to use the Landau picture of a quasiparticle Fermi liquid in order to
estimate the forward scattering limit of quasiparticle interactions. Sure,
forward scattering is not full scattering—but it provides a starting point!
We start from the usual thermodynamic response functions, expressed in
terms of the quasiparticle interaction fkkŒ. We show in the Appendix that
only the a=0 part survives in infinite dimension: the dimensionless FkkŒ=r̃
fkkŒ thus depends on two numbers Fos and Foa. The charge compressibility
is

o=dn/dm=
r̃

1+Fos

o vanishes in the insulator (moving m inside the gap Dg makes no differ-
ence). By continuity o must be % z near the transition, as confirmed by the
detailed DMFT calculation. It follows that Fos % 1/z2. In contrast the
global spin suceptibility (with a g-factor at every site) is

q=dM/dH=
r̃

1+Foa

Because electron hopping conserves spin, the total Zeeman energy commu-
tes with the kinetic energy: total Sz is a good quantum number. The
Zeeman splitting can be absorbed in a redefinition of the bare particle
energies Ek: the only change is a shift of the band edges in opposite direc-
tions for up and down spins. Nothing happens at the Fermi level and con-
sequently q ignores the existence of the resonance. It is unrenormalized,
’ r, as confirmed by the DMFT. It follows that Foa % 1/z. We thus know
the Landau coefficients, which are both singular as z goes to 0. Note that
within perturbation theory fkkŒ corresponds to the so called ‘‘w-limit,’’ in
which momentum transfer goes to 0 first: in that limit the Fermi level sin-
gularity does not contribute to the Bethe–Salpeter kernel. It is thus surpris-
ing that f should be singular as a function of z! The answer is that such a
singularity is not a quasiparticle effect, but a consequence of the residual
entropy of the Mott sidebands. Anyhow, whatever its origin, the calcula-
tion of Fos and Foa is reliable.
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The Cooper kernel involves large momentum transfers: its forward
scattering limit thus corresponds to the so called ‘‘k-limit,’’ in which
momentum transfer goes to 0 last. That forward scattering amplitude is
also provided by Landau theory: its dimensionless version is

Aos=
Fos
1+Fos

% 1−
1
Fos
, Aoa=

Foa
1+Foa

% 1−
1
Fos

The amplitude for antiparallel spins is consequently

A ‘a=Aos−Aoa % z

The interaction is repulsive because the spin channel dominates. Note that
the interaction energy is C ‘a=A ‘a /r̃ % Dz2, in agreement with the naive
calculation. We conclude that the effective dimensionless interaction is
reduced by renormalization, by a factor z, but it remains repulsive.
The physics of quasiparticle pairs is controlled by the a=0 interaction

c in the particle-particle channel. If the interaction were local, nothing
would depend on momentum and c would be the same as forward scatter-
ing in the particle-hole channel. Unfortunately that is not tenable. A purely
local interaction implies a zero scattering amplitude c ‘‘ because of crossing
symmetry (exclusion principle), in clear disagreement with the exact cal-
culation of F and A. We show in the Appendix that indeed c is nonlocal.
Thus we cannot relate c to forward scattering. But a reasonable guess is
that sign and order of magnitude are preserved. If so, s-wave superconduc-
tivity is impossible in the half filled nondegenerate Hubbard model.

3. ORBITALLY DEGENERATE HUBBARD MODEL

We consider now a model in which one electron on a given site has an
orbital angular momentum L=1, in addition to the two spin states
S=1/2. A large on site Coulomb repulsion U acts between all local
channels

1
2 Un

2, n=C
m, s
nms=local valency

For any integer n, from 1 to 5, a Mott transition should occur when U
exceeds a threshold Uc. Basically the system becomes an insulator when the
splitting of Mott sidebands exceeds the bandwidth. The transition is pri-
marily a valency effect and degeneracy plays a minor role in its occurrence.
Consider for instance the case n=2. A given site has 15 states which must
be odd under fermion permutation: spin singlet S=0 with either L=0 or
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L=2, spin triplet S=1 with L=1. All these states are degenerate if only
U is there. Then the issue of residual entropy is still around—just worse!
We now add a small interaction J that lifts that degeneracy. We ignore

Hund’s rule and we assume that the lowest state is the singlet S=0,
L==0. Of course physical arguments should be supplied to support
that—but at this stage we take it as a model. Then the entropy of localized
electrons is naturally quenched on a temperature range of order J. The
ground state has no residual entropy: the issue of translational symmetry
breaking (such as antiferromagnetism) is not as pressing as in the usual
Hubbard model. Assume that the Mott transition is approached from the
metallic side: as long as the resonance width D is larger than the splitting J,
the latter should be irrelevant! In more physical terms, (/D is the flipping
time of the local state, meaning a finite time memory in much the same way
as a temperature means a memory (/T: any longer time scale is irrelevant.
If J° U, D, the Mott gap will first develop as if J were 0. The arguments
of the preceding section remain valid and a narrow resonance inside a large
preformed gap picture should develop: at zero temperature the resonance
width D decreases as U approaches the Mott transition Uc2. Such a picture
must break down when D reaches J. Then local splitting takes over free
carriers in quenching the entropy: the very mechanism that led to free
carriers (the gain in Kondo energy pays for the cost of kinetic energy) does
not operate any more. Some new physics should take over!
U and J play very different roles. U refers to a change of local valency

which responds to the hopping amplitude from site to site. As the resonance
width decreases to 0, U should scale down as well, as found in the preceding
section. In contrast J controls the level structure within a given valency,
namely the splitting between the singlet groundstate and excited multiplets.
That splitting is an atomic property which has nothing to do with hopping, it
should be insensitive to localization. Thus J should not renormalize signifi-
cantly. Assume for a moment that it is true. Then the interaction J that
pushes the singlet down acts like an attraction between quasiparticles: is it
possible that such an attraction creates superconductivity? Then a specta-
cular strong coupling regime should emerge close to Uc2. We try to answer
that question within the qualitative approach used in the preceding section.
Let us assume that D % J: the resonance is not much affected by J, the

density of states is r̃=r/z % rD/D. Can we estimate the Cooper vertex
from thermodynamic response functions, using Landau theory for the
forward scattering amplitude? Since we are dealing with singlet pairs, the
convenient basis for treating spin 1 particles is the cartesian basis x, y, z,
rather than angular momentum m=−1, 0,+1. A singlet pair is the sum

(x ‘ , x a )+(y ‘ , y a )+(z ‘ , z a )
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(which is clearly rotation invariant). The corresponding Cooper kernel is
M+2N, where M scatters (x ‘ , x a ) into itself and N scatters (x ‘ , x a )
into (y ‘ , y a ). We must transfer that signature into the particle hole
channel in which the Landau parameter fkkŒ acts. ForM that transfer leads
to

(el x ‘ , ho x ‘ )S (el x a , ho x a )

Focussing on the orbital part we write

cgxcx=
1
3 [(c

g
xcx+c

g
ycy+c

g
z cz)+(c

g
xcx−c

g
ycy)+(c

g
xcx−c

g
z cz)]

We can infer M from a combination of spin symmetric and antisymmetric
response to charge and quadrupolar perturbations. The calculation of N
involves the particle hole vertex

(el x ‘ , ho y ‘ )S (el y a , ho x a )

If a rotation by p/4 is applied, the quadrupolar vertex (cgxcx−c
g
ycy) trans-

forms into (cgxcy+c
g
ycx). N is a purely quadrupolar quantity. Let C be the

scattering vertex in the particle-hole channel. The forward scattering limit
may be written as

|a|2 (Ars−Ara)+|b|2 (AQs−AQa)

where a and b are angular coefficients, Ar and AQ interactions in the
charge and quadrupolar channels, which can be inferred from the corre-
sponding thermodyanmic response functions.
The Cr part involves the compressibility and the spin susceptibility: it

yields a small repulsion as in the regular Hubbard model, with a dimen-
sionless r̃C of order z. The interesting part is the quadrupolar CQ which
involves virtual excitation to excited atomic states within the manifold of
valency 2. Within Fermi liquid theory let us write

qQs=
r̃

1+FQs
, qQa=

r̃

1+FQa

(which fixes the normalization of the quadrupole). The dimensionless
forward scattering amplitudes are Ai=Fi/(1+Fi), leading to

AQs−AQa=
FQs
1+FQs

−
FQa
1+FQa

=
1

1+FQa
−

1
1+FQs

=
qQa−qQs
r̃

The whole issue is an estimate of qQs and qQa.
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The Anderson compensation theorem should not apply since the con-
servation of L is not as strict as that of S, the less so if crystal field pertur-
bations lift the orbital rotational invariance. Let us first consider the
insulator: the quadrupolar response functions are primarily an atomic
problem and we expect them to be of order 1/J, independent of the reso-
nance width zD in lowest order. More specifically CQs involves an external
field which is an orbital quadruplet and a spin singlet. It naturally couples
the singlet ground state S=L=0 into the excited configuration
S=0, L=2: we thus expect qQs % rD/J, where r is the bare density of
states. Note the difference with the magnetic susceptibility: in constrast to
spin the quadrupolar state is not conserved upon hopping. A change in
quadrupolar states cannot be absorbed in a shift in the corresponding
bands—hence the large qQs, insensitive to localization.
In contrast CQa involves an external field which is an orbital

quadruplet and a spin triplet: it should couple the ground state to an
S=1, L=2 state which does not exist. Any response must involve virtual
coupling to neighbouring sites, similar to the picture of van Vleck para-
magnetism. At best we expect a small qQa of order r. Note that we thereby
automatically generate an attraction, which is hardly surprising since we
assumed that the singlet was lowest!
Such a result only holds if D < J (the bandwidth should not compete

with local splitting). The dimensionless Cooper vertex (scaled by the
density of states r̃) is then

AQs−AQa % −
D

J

We see that in the crossover region D % J the effective quasiparticle
interaction is an intermediate strength attraction! The real attraction energy
is comparable to the bandwidth D. In the opposite limit D± J the Hund
coupling J becomes negligible: the susceptibilities qQs and qQa should be
controlled by the free particles and J can be set equal to 0. Both qQs and
qQa should be equal to r̃ and AQs−AQa should consequently vanish.
We thus confirm our initial guess: the ‘‘Hund’’ coupling between qua-

siparticles, originally J, is essentially unchanged until the bandwidth is
comparable to J, precisely when the entropy quenching changes regime,
from a Kondo picture to a more conventional atomic mechanism. This is
contrasted to the effective U which is renormalized to 0 as the Mott transi-
tion is approached. In the crossover region the effective quasiparticle
interaction is an intermediate strength attraction, which goes down to 0
when D° J, disappearing at the Mott transition.
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Up to now the discussion is only concerned with forward scattering.
Just as for the regular Hubbard model we cannot proceed to the real
Cooper kernel for superconductivity. But, once again, we can reasonably
assume that a partly nonlocal interaction should not change orders of
magnitude and signs. If this is so, a pocket of s-wave superconductivity
should exist close to the Mott transition, which is exactly the result of
ref. 2. The control parameter is the ratio D/J. When D± J the Coulomb
repulsion dominates because it has not scaled down far enough. Super-
conductivity appears in the crossover region, first in a strong coupling
regime analogous to Bose Einstein condensation or preformed pairs. When
D becomes ° J, superconductivity switches to a BCS regime, ultimately
disappearing at the Mott transition ‘‘faute de combattants.’’
Such a qualitative argument looks robust. It teaches us a number of

interesting points:

(i) Some sort of local attraction must exist in order to produce
s-wave superconductivity. Here it is the Hund coupling J.

(ii) Superconductivity competes with translational symmetry break-
ing in quenching the high temperature entropy. It seems that a singlet
ground state is crucial in eliminating the appearance of two sublattices. In
this respect the simpler choice of an orbital ‘‘flavour’’ doublet would not
work. The antisymmetric two particle states are S=0, L=1 or S=1,
L=0: none of them is a singlet!

(iii) The energy scale that emerges is the unrenormalized J. As long
as J is smaller than the Mott gap Dg the description in terms of a narrow
resonance holds. If J is larger one moves into genuine strong coupling
superconductivity, which is another story.

(iv) The Fermi liquid crosses over from a weak coupling regime at
small U to a strong coupling regime near the Mott transition. In order to
generate an attraction in the Cooper singlet channel the spin symmetric
quadrupolar susceptibility must be larger than its spin antisymmetric
counterpart—a condition fulfilled by a pair of L=1 electrons.

These remarks may provide hints in searching for new materials.

4. CONCLUSION

The above qualitative arguments do not add much to the beautiful
results of ref. 2. The main point is the statement that a superconducting
pocket should automatically appear near a Mott transition towards an
insulator whose ground state is a singlet, with an unconventional strong
coupling behaviour in the crossover region. Because that statement is
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qualitative, it may help searching for specific examples. Playing with an
inverted Hund’s coupling looks dangerous: exchange is a robust feature of
atomic physics! Materials scientists versed in the infinite variety of transition
metals and rare earths compounds may find good examples. I want here to
draw attention to another possibility, namely molecular crystals. There are
many molecules whose ground state is a singlet—say ethylene with a pair of
bonding p electrons. One can certainly find molecules where the singlet exci-
tation energy is small. If they are put under pressure they might undergo a
metal-insulator transition: do they display strong coupling superconductivity
near the transition? The answer is not obvious, for a number of reasons.
There are many alternatives to a metal-insulator transition—for instance
polymerization: this is certainly what happens to compressed ethylene. One
may try to stop it grafting methyl groups on the double bond—but then the
coherent band width of the metallic phase is dramatically reduced. Another
problem is the possibility of a first order transition, due for instance to lattice
distortions, which will hide the critical region where D goes to 0. On more
theoretical grounds one should not forget that the sign of the interaction
depends on the nature of molecular excited states (remember our argument
which was based on the absence of an L=2, S=1 atomic state!). All these
warnings show that the quest is by no means obvious! But nature is rich: the
main purpose of this short note was to launch the question and to provide a
few guidelines. An experimental realization of the proposal of ref. 2 would
enhance the impact of a really original result!

APPENDIX A

In this appendix we try to clarify the nature of interaction vertices in
infinite dimension d. Let t be the hopping amplitude to a nearest neighbour
site: due to destructive interference the effective bandwidth is D % t`d
with negligible tails until td. The large coordinence tends to make the ver-
tices local. The standard example is the one particle self energy Sij(e). Any
intermediate state has at least three lines. Since the interaction is local,
entering at i and exiting at j implies nonlocal propagators Gij inside the self
energy. The minimum number of these is 3: assuming intermediate cou-
pling U % D, a nonlocal element i ] j is of order t3/D2 % t/d, negligible as
compared to the bare hopping t. When expressed in terms of skeleton
graphs, Sii[Gii] is consequently a local functional of the full Gii. Site i
knows the outside world only through Gii, via excursions to nearby sites,
equivalent to an additional local self energy

s=C
j
t2Gjj
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Excursions involve a single line and the summation over j makes for the
factor 1/d in t2.
We want to carry that discussion to a scattering amplitude described

by a four point vertex, which can be read either in the pp channel (c) or in
one of the two ph channel (C). We work in real space instead of momen-
tum space. Disregarding for a moment energy and spin variables, the vertex
in a given channel is indexed by the entering sites i1i2 and by the exit sites
j1 j2. The local term with all sites equal will clearly dominate as it does for
the self energy: to what extent should we worry with nonlocal terms? Let us
start from C iiii and go step by step. The simplest case is the hop of a local
pair to another local pair, C jjii . If the diagram is irreducible in the channel
under consideration (it cannot be split by cutting 2 lines only), then the
minimum number of intermediate lines is 4: the corresponding irreducible
interaction I jjii is of order t

4 % 1/d2, thus negligible. If on the other hand the
diagram is reducible (Fig. 1(a)), there exists an intermediate state with 2
lines: if the hopping only acts there the contribution is of order t2 % 1/d.
When writing the Bethe–Salpeter equation

C jjii=I dij+IGinGinC
jj
nn

we see that nonlocal vertices C are of order 1/d, but they are relevant once
one sums over n and j. A similar argument holds for C ijij, which scatters
particles sitting on neighbouring sites. A diagram which is reducible in the
cross channel, as shown on Fig. 1(b), yields a contribution % 1/d which is
relevant upon summation over j. This is not so for terms such as C ijii which
would break a local pair. The lowest order diagram shown on Fig. 1(c)
yields a contribution of order t3. Iteration of these nonlocal pairs reduces
the vertex more and more. In physical terms the probability that particles
starting from different sites meet in the outside world is negligible.

(a) (b) (c)

jj

i

j

jji

i i j

i

i i

j j

i j

ji

i j

i i

i j

ii

i

Fig. 1. A few example of nonlocal vertices (the crosses are hopping matrix elements t). (a)
Hopping of a local pair (i, i) to (j, j). (b) Onsite interaction within a local pair. (c) Breaking
of an incoming local pair.
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Let us focus on the particle-hole channel. Moving to momentum space
we may write the vertex as

C(k, k −; q)=C
ri

C(ri) exp i 5k(r1−r2)−k −(r3−r4)+
q
2
(r1+r2−r3−r4)6

The fully local C iiii (wi) is the dominant term, momentum independent. If
we look at it in the pp channel, C splits into a triplet and a singlet term.
Crossing symmetry implies a zero triplet part on the energy shell, wi=m
(antisymmetry upon permutation). Carried over to the usual description in
terms of spin symmetric and antisymmetric parts C (s) and C (a) in the par-
ticle-hole channel, that means C (s)=−C (a) (it is just what happens in first
order in the Hubbard U). In higher orders such a result is clearly inconsis-
tent with Fermi liquid theory, which predicts different limits of the vertex
C in the so called q and w limits. The scattering vertex has to be nonlocal:
put another way, fermions must move in order to produce a liquid! In
practice Landau coefficients such as fkkŒ imply an average of k and k − over
the Fermi surface, leading to strong destructive interference if r1 ] r2 or
r3 ] r4. It follows that the entering and exiting pairs are local: C does not
depend on k and k − (as stated in the paper, the Landau coefficients only
have a=0 terms). In contrast Landau coefficients involves q — 0: one does
sum over (r1−r3)! That relaxes the crossing symmetry constraint, while
precluding any exact relation between forward scattering and Cooper
kernel.
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